Quelques questions

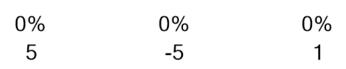
To join the session

Go to echo360poll.eu

Enter Code

stan

Scan the QR code with your device


Pour les vecteurs

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $v = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$

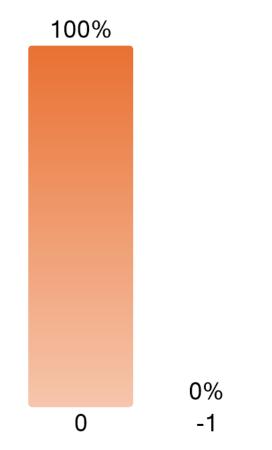
la 2ème coordonnée de \mathbf{v} relative à $B = {\mathbf{v}_1, \mathbf{v}_2}$ est

100%

- a. 5
- b. -5
- c. 1
- **✓** d. -1

Soit $T: \mathbb{R}^2 \to \mathbb{R}^2$ l'application linéaire dont la matrice canonique est

$$[T] = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$$


Si $A=[T]_{B \in B}$, alors $A_{1,2}$ est

a. 2

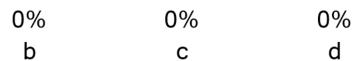
c. -1

d. 1

0%

0%


La dimension de $\mathbb{M}_{2x3}(\mathbb{R})$ vaut



b. 5

c. 2

d. 3

Une base de $\mathbb{M}_{2x3}(\mathbb{R})$ est par exemple:

$$\left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}$$